Skip to main content
Log in

Cannabinoids and Neuroprotection in Basal Ganglia Disorders

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Cannabinoids have been proposed as clinically promising neuroprotective molecules, as they are capable to reduce excitotoxicity, calcium influx, and oxidative injury. They are also able to decrease inflammation by acting on glial processes that regulate neuronal survival and to restore blood supply to injured area by reducing the vasoconstriction produced by several endothelium-derived factors. Through one or more of these processes, cannabinoids may provide neuroprotection in different neurodegenerative disorders including Parkinson’s disease and Huntington’s chorea, two chronic diseases that are originated as a consequence of the degeneration of specific nuclei of basal ganglia, resulting in a deterioration of the control of movement. Both diseases have been still scarcely explored at the clinical level for a possible application of cannabinoids to delay the progressive degeneration of the basal ganglia. However, the preclinical evidence seems to be solid and promising. There are two key mechanisms involved in the neuroprotection by cannabinoids in experimental models of these two disorders: first, a cannabinoid receptor-independent mechanism aimed at producing a decrease in the oxidative injury and second, an induction/upregulation of cannabinoid CB2 receptors, mainly in reactive microglia, that is capable to regulate the influence of these glial cells on neuronal homeostasis. Considering the relevance of these preclinical data and the lack of efficient neuroprotective strategies in both disorders, we urge the development of further studies that allow that the promising expectatives generated for these molecules progress from the present preclinical evidence till a real clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Marsicano G, Lutz B (2006) Neuromodulatory functions of the endocannabinoid system J Endocrinol Invest 29:27–46

    PubMed  CAS  Google Scholar 

  2. Fernández-Ruiz J, González S (2005) Cannabinoid control of motor function at the basal ganglia. Handb Exp Pharmacol 168:479–507

    Article  PubMed  Google Scholar 

  3. van der Stelt M, Di Marzo V (2003) The endocannabinoid system in the basal ganglia and in the mesolimbic reward system: implications for neurological and psychiatric disorders. Eur J Pharmacol 480:133–150

    Article  PubMed  CAS  Google Scholar 

  4. Romero J, Lastres-Becker I, de Miguel R, Berrendero F, Ramos JA, Fernández-Ruiz JJ (2002) The endogenous cannabinoid system and the basal ganglia: biochemical, pharmacological and therapeutic aspects. Pharmacol Ther 95:137–152

    Article  PubMed  CAS  Google Scholar 

  5. Giuffrida A, Piomelli D (2000) The endocannabinoid system: a physiological perspective on its role in psychomotor control. Chem Phys Lipids 108:151–158

    Article  PubMed  CAS  Google Scholar 

  6. Fernández-Ruiz J, González S, Romero J, Ramos JA (2005) Cannabinoids in neurodegeneration and neuroprotection. In: Mechoulam R (ed) Cannabinoids as therapeutics (MDT). Birkhaüser, Switzerland, pp79–109

    Chapter  Google Scholar 

  7. Lastres-Becker I, Hansen HH, Berrendero F, de Miguel R, Pérez-Rosado A, Manzanares J, Ramos JA, Fernández-Ruiz J (2002) Loss of cannabinoid CB1 receptors and alleviation of motor hyperactivity and neurochemical deficits by endocannabinoid uptake inhibition in a rat model of Huntington’s disease. Synapse 44:23–35

    Article  PubMed  CAS  Google Scholar 

  8. Lastres-Becker I, de Miguel R, De Petrocellis L, Makriyannis A, Di Marzo V, Fernández-Ruiz J (2003) Compounds acting at the endocannabinoid and/or endovanilloid systems reduce hyperkinesia in a rat model of Huntington’s disease. J Neurochem 84:1097–1109

    Article  PubMed  CAS  Google Scholar 

  9. Fernández-Espejo E, Caraballo I, Rodríguez de Fonseca F, El Banoua F, Ferrer B, Flores JA, Galán-Rodríguez B (2005) Cannabinoid CB1 antagonists possess antiparkinsonian efficacy only in rats with very severe nigral lesion in experimental parkinsonism. Neurobiol Dis 18:591–601

    Article  PubMed  CAS  Google Scholar 

  10. González S, Scorticati C, García-Arencibia M, de Miguel R, Ramos JA, Fernández-Ruiz J (2006) Effects of rimonabant, a selective cannabinoid CB1 receptor antagonist, in a rat model of Parkinson’s disease. Brain Res 1073–1074:209–219

    Article  PubMed  CAS  Google Scholar 

  11. Mechoulam R, Panikashivili A, Shohami E (2002) Cannabinoids and brain injury: therapeutic implications. Trends Mol Med 8:58–61

    Article  PubMed  CAS  Google Scholar 

  12. Grundy RI (2002) The therapeutic potential of the cannabinoids in neuroprotection. Expert Opin Investig Drugs 11:1–10

    Article  Google Scholar 

  13. Akwa Y, Allain H, Bentue-Ferrer D, Berr C, Bordet R, Geerts H, Nieoullon A, Onteniente B, Vercelletto M (2005) Neuroprotection and neurodegenerative diseases: from biology to clinical practice. Alzheimer Dis Assoc Disord 19:226–239

    Article  PubMed  Google Scholar 

  14. Guzmán M, Sánchez C, Galve-Roperh I (2001) Control of the cell survival/death decision by cannabinoids. J Mol Med 78:613–625

    Article  PubMed  Google Scholar 

  15. Fernández-Ruiz J, Romero J, Velasco G, Tolón RM, Ramos JA, Guzmán M (2007) Cannabinoid CB2 receptor: a new target for the control of neural cell survival? Trends Pharmacol Sci 28:39–45

    Article  PubMed  CAS  Google Scholar 

  16. Hansen HS, Moesgaard B, Petersen G, Hansen HH (2002) Putative neuroprotective actions of N-acyl-ethanolamines. Pharmacol Ther 95:119–126

    Article  PubMed  CAS  Google Scholar 

  17. van der Stelt M, Veldhuis WB, Maccarrone M, Bar PR, Nicolay K, Veldink GA, Di Marzo V, Vliegenthart JF (2002) Acute neuronal injury, excitotoxicity, and the endocannabinoid system. Mol Neurobiol 26:317–346

    Article  PubMed  Google Scholar 

  18. Hansen HS, Moesgaard B, Hansen HH, Schousboe A, Petersen G (1999) Formation of N-acyl-phosphatidylethanolamine and N-acylethanolamine (including anandamide) during glutamate-induced neurotoxicity. Lipids 34:S327–S330

    Article  PubMed  CAS  Google Scholar 

  19. Hansen HH, Schmid PC, Bittigau P, Lastres-Becker I, Berrendero F, Manzanares J, Ikonomidou C, Schmid HH, Fernandez-Ruiz JJ, Hansen HS (2001) Anandamide, but not 2-arachidonoylglycerol, accumulates during in vivo neurodegeneration. J Neurochem 78:1415–1427

    Article  PubMed  CAS  Google Scholar 

  20. Marsicano G, Goodenough S, Monory K, Hermann H, Eder M, Cannich A, Azad SC, Cascio MG, Gutierrez SO, van der Stelt M, Lopez-Rodriguez ML, Casanova E, Schutz G, Zieglgansberger W, Di Marzo V, Behl C, Lutz B (2003) CB1 cannabinoid receptors and on-demand defense against excitotoxicity. Science 302:84–88

    Article  PubMed  CAS  Google Scholar 

  21. Gubellini P, Picconi B, Bari M, Battista N, Calabresi P, Centonze D, Bernardi G, Finazzi-Agrò A, Maccarrone M (2002) Experimental parkinsonism alters endocannabinoid degradation: implications for striatal glutamatergic transmission. J Neurosci 22:6900–6907

    PubMed  CAS  Google Scholar 

  22. Panikashvili D, Simeonidou C, Ben-Shabat S, Hanus L, Breuer A, Mechoulam R, Shohami E (2001) An endogenous cannabinoid (2-AG) is neuroprotective after brain injury. Nature 413:527–531

    Article  PubMed  CAS  Google Scholar 

  23. Schabitz WR, Giuffrida A, Berger C, Aschoff A, Schwaninger M, Schwab S, Piomelli D (2002) Release of fatty acid amides in a patient with hemispheric stroke: a microdialysis study. Stroke 33:2112–2124

    Article  PubMed  CAS  Google Scholar 

  24. van der Stelt M, Veldhuis WB, van Haaften GW, Fezza F, Bisogno T, Bär PR, Veldink GA, Vliegenthart JF, Di Marzo V, Nicolay K (2001) Exogenous anandamide protects rat brain against acute neuronal injury in vivo. J Neurosci 21:8765–8771

    PubMed  Google Scholar 

  25. Jin KL, Mao XO, Goldsmith PC, Greenberg DA (2000) CB1 cannabinoid receptor induction in experimental stroke. Ann Neurol 48:257–261

    Article  PubMed  CAS  Google Scholar 

  26. Benito C, Nuñez E, Tolon RM, Carrier EJ, Rabano A, Hillard CJ, Romero J. (2003) Cannabinoid CB2 receptors and fatty acid amide hydrolase are selectively overexpressed in neuritic plaque-associated glia in Alzheimer’s disease brains. J Neurosci 23:11136–11141

    PubMed  CAS  Google Scholar 

  27. Veldhuis WB, van der Stelt M, Wadman MW, van Zadelhoff G, Maccarrone M, Fezza F, Veldink GA, Vliegenthart JF, Bar PR, Nicolay K, Di Marzo V (2003) Neuroprotection by the endogenous cannabinoid anandamide and arvanil against in vivo excitotoxicity in the rat: role of vanilloid receptors and lipoxygenases. J Neurosci 23:4127–4133

    PubMed  CAS  Google Scholar 

  28. Shen M, Thayer SA (1998) Cannabinoid receptor agonists protect cultured rat hippocampal neurons from excitotoxicity. Mol Pharmacol 54:459–462

    PubMed  CAS  Google Scholar 

  29. Abood ME, Rizvi G, Sallapudi N, McAllister SD (2001) Activation of the CB1 cannabinoid receptor protects cultured mouse spinal neurons against excitotoxicity. Neurosci Lett 309:197–201

    Article  PubMed  CAS  Google Scholar 

  30. Nagayama T, Sinor AD, Simon RP, Chen J, Graham SH, Jin KL, Greenberg DA (1999) Cannabinoids and neuroprotection in global and focal cerebral ischemia and in neuronal cultures. J Neurosci 19:2987–2995

    PubMed  CAS  Google Scholar 

  31. Schlicker E, Kathmann M (2001) Modulation of transmitter release via presynaptic cannabinoid receptors. Trends Pharmacol Sci 22:565–572

    Article  PubMed  CAS  Google Scholar 

  32. Lastres-Becker I, Bizat N, Boyer F, Hantraye P, Brouillet E, Fernández-Ruiz J (2003) Effects of cannabinoids in the rat model of Huntington’s disease generated by an intrastriatal injection of malonate. Neuroreport 14:813–816

    Article  PubMed  CAS  Google Scholar 

  33. Hansen HH, Azcoitia I, Pons S, Romero J, Garcia-Segura LM, Ramos JA, Hansen HS, Fernandez-Ruiz J (2002) Blockade of cannabinoid CB1 receptor function protects against in vivo disseminating brain damage following NMDA-induced excitotoxicity. J Neurochem 82:154–158

    Article  PubMed  CAS  Google Scholar 

  34. Shohami E, Mechoulam R (2000) A non-psychotropic cannabinoid with neuroprotective properties. Drug Dev Res 50:211–215

    Article  CAS  Google Scholar 

  35. Hampson AJ, Bornheim LM, Scanziani M, Yost CS, Gray AT, Hansen BM, Leonoudakis DJ, Bickler PE (1998) Dual effects of anandamide on NMDA receptor-mediated responses and neurotransmission. J Neurochem 70:671–676

    Article  PubMed  CAS  Google Scholar 

  36. Demuth DG, Molleman A (2006) Cannabinoid signalling. Life Sci 78:549–563

    Article  PubMed  CAS  Google Scholar 

  37. Fowler CJ (2003) Plant-derived, synthetic and endogenous cannabinoids as neuroprotective agents. Non-psychoactive cannabinoids, ‘entourage’ compounds and inhibitors of N-acyl ethanolamine breakdown as therapeutic strategies to avoid pyschotropic effects. Brain Res Rev 41:26–43

    Article  PubMed  CAS  Google Scholar 

  38. Wagner JA, Varga K, Kunos G (1998) Cardiovascular actions of cannabinoids and their generation during shock. J Mol Med 76:824–836

    Article  PubMed  CAS  Google Scholar 

  39. Randall MD, Harris D, Kendall DA, Ralevic V (2002) Cardiovascular effects of cannabinoids. Pharmacol Ther 95:191–202

    Article  PubMed  CAS  Google Scholar 

  40. Chen Y, McCarron RM, Ohara Y, Bembry J, Azzam N, Lenz FA, Shohami E, Mechoulam R, Spatz M (2000) Human brain capillary endothelium: 2-arachidonoglycerol (endocannabinoid) interacts with endothelin-1. Circ Res 87:323–327

    PubMed  CAS  Google Scholar 

  41. Begg M, Pacher P, Batkai S, Osei-Hyiaman D, Offertaler L, Mo FM, Liu J, Kunos G (2005) Evidence for novel cannabinoid receptors. Pharmacol Ther 106:133–145

    Article  PubMed  CAS  Google Scholar 

  42. Stella N (2004) Cannabinoid signaling in glial cells. Glia 48:267–277

    Article  PubMed  Google Scholar 

  43. Walter L, Stella N (2004) Cannabinoids and neuroinflammation. Br J Pharmacol 141:775–785

    Article  PubMed  CAS  Google Scholar 

  44. Smith SR, Terminelli C, Denhardt G (2000) Effects of cannabinoid receptor agonist and antagonist ligands on production of inflammatory cytokines and anti-inflammatory interleukin-10 in endotoxemic mice. J Pharmacol Exp Ther 293:136–150

    PubMed  CAS  Google Scholar 

  45. Molina-Holgado F, Pinteaux E, Moore JD, Molina-Holgado E, Guaza C, Gibson RM, Rothwell NJ (2003) Endogenous interleukin-1 receptor antagonist mediates anti-inflammatory and neuroprotective actions of cannabinoids in neurons and glia. J Neurosci 23:6470–6474

    PubMed  CAS  Google Scholar 

  46. Guzman M, Sanchez C (1999) Effects of cannabinoids on energy metabolism. Life Sci 65:657–664

    Article  PubMed  CAS  Google Scholar 

  47. Marsicano G, Moosmann B, Hermann H, Lutz B, Behl C (2002) Neuroprotective properties of cannabinoids against oxidative stress: role of the cannabinoid receptor CB1. J Neurochem 80:448–456

    Article  PubMed  CAS  Google Scholar 

  48. Eshhar N, Striem S, Kohen R, Tirosh O, Biegon A (1995) Neuroprotective and antioxidant activities of HU-211, a novel NMDA receptor antagonist. Eur J Pharmacol 283:19–29

    Article  PubMed  CAS  Google Scholar 

  49. Hampson AJ, Grimaldi M, Axelrod J, Wink D (1998) Cannabidiol and (−)Δ9-tetrahydrocannabinol are neuroprotective antioxidants. Proc Natl Acad Sci U S A 95:8268–8273

    Article  Google Scholar 

  50. Chen Y, Buck J (2000) Cannabinoids protect cells from oxidative cell death: a receptor-independent mechanism. J Pharmacol Exp Ther 293:807–812

    PubMed  CAS  Google Scholar 

  51. García-Arencibia M, González S, de Lago E, Ramos JA, Mechoulam R, Fernández-Ruiz J (2007) Evaluation of the neuroprotective effect of cannabinoids in a rat model of Parkinson’s disease: importance of antioxidant and cannabinoid receptor-independent properties. Brain Res 1134:162–170

    Article  PubMed  CAS  Google Scholar 

  52. Sagredo O, Ramos JA, Decio A, Mechoulam R, Fernández-Ruiz J (2007) Cannabidiol reduced the striatal atrophy caused 3-nitropropionic acid in vivo by mechanisms independent of the activation of cannabinoid receptors. Eur J Neurosci (in press)

  53. Borrell-Pages M, Zala D, Humbert S, Saudou F (2006) Huntington’s disease: from huntingtin function and dysfunction to therapeutic strategies. Cell Mol Life Sci 63:2642–2660

    Article  PubMed  CAS  Google Scholar 

  54. Herkenham M, Lynn AB, Little MD, Melvin LS, Johnson MR, de Costa DR, Rice KC (1991) Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J Neurosci 11:563–583

    PubMed  CAS  Google Scholar 

  55. Lastres-Becker I, De Miguel R, Fernández-Ruiz J (2003) The endocannabinoid system and Huntington’s disease. Curr Drug Target CNS Neurol Disord 2:335–347

    Article  CAS  Google Scholar 

  56. Lastres-Becker I, Bizat N, Boyer F, Hantraye P, Fernández-Ruiz JJ, Brouillet E (2004) Potential involvement of cannabinoid receptors in 3-nitropropionic acid toxicity in vivo: implication for Huntington’s disease. Neuroreport 15:2375–2379

    Google Scholar 

  57. Pintor A, Tebano MT, Martire A, Grieco R, Galluzzo M, Scattoni ML, Pezzola A, Coccurello R, Felici F, Cuomo V, Piomelli D, Calamandrei G, Popoli P (2006) The cannabinoid receptor agonist WIN 55,212-2 attenuates the effects induced by quinolinic acid in the rat striatum. Neuropharmacology 51:1004–1012

    Article  PubMed  CAS  Google Scholar 

  58. Glass M, Dragunow M, Faull RLM (2000) The pattern of neurodegeneration in Huntington’s disease: a comparative study of cannabinoid, dopamine, adenosine and GABA-A receptor alterations in the human basal ganglia in Huntington’s disease. Neuroscience 97:505–519

    Article  PubMed  CAS  Google Scholar 

  59. Lastres-Becker I, Berrendero F, Lucas JJ, Martin E, Yamamoto A, Ramos JA, Fernández-Ruiz J (2002) Loss of mRNA levels, binding and activation of GTP-binding proteins for cannabinoid CB1 receptors in the basal ganglia of a transgenic model of Huntington’s disease. Brain Res 929:236–242

    Article  PubMed  CAS  Google Scholar 

  60. Denovan-Wright EM, Robertson HA (2000) Cannabinoid receptor messenger RNA levels decrease in subset neurons of the lateral striatum, cortex and hippocampus of transgenic Huntington’s disease mice. Neuroscience 98:705–713

    Article  PubMed  CAS  Google Scholar 

  61. Aiken CT, Tobin AJ, Schweitzer ES (2004) A cell-based screen for drugs to treat Huntington’s disease. Neurobiol Dis 16:546–555

    Article  PubMed  CAS  Google Scholar 

  62. Wang W, Duan W, Igarashi S, Morita H, Nakamura M, Ross CA (2005) Compounds blocking mutant huntingtin toxicity identified using a Huntington’s disease neuronal cell model. Neurobiol Dis 20:500–508

    Article  PubMed  CAS  Google Scholar 

  63. Gu M, Gash MT, Mann VM, Javoy-Agid F, Cooper JM, Schapira AH (1996) Mitochondrial defect in Huntington’s disease caudate nucleus. Ann Neurol 39:385–389

    Article  PubMed  CAS  Google Scholar 

  64. Bizat N, Hermel JM, Humbert S, Jacquard C, Creminon C, Escartin C, Saudou F, Krajewski S, Hantraye P, Brouillet E (2003) In vivo calpain/caspase cross-talk during 3-nitropropionic acid-induced striatal degeneration: implication of a calpain-mediated cleavage of active caspase-3. J Biol Chem 278:43245–43253

    Article  PubMed  CAS  Google Scholar 

  65. Galas MC, Bizat N, Cuvelier L, Bantubungi K, Brouillet E, Schiffmann SN, Blum D (2004) Death of cortical and striatal neurons induced by mitochondrial defect involves differential molecular mechanisms. Neurobiol Dis 15:152–159

    Article  PubMed  CAS  Google Scholar 

  66. Toulmond S, Tang K, Bureau Y, Ashdown H, Degen S, O’Donnell R, Tam J, Han Y, Colucci J, Giroux A, Zhu Y, Boucher M, Pikounis B, Xanthoudakis S, Roy S, Rigby M, Zamboni R, Robertson GS, Ng GY, Nicholson DW, Fluckiger JP (2004) Neuroprotective effects of M826, a reversible caspase-3 inhibitor, in the rat malonate model of Huntington’s disease. Br J Pharmacol 141:689–697

    Article  PubMed  CAS  Google Scholar 

  67. Sapp E, Kegel KB, Aronin N, Hashikawa T, Uchiyama Y, Tohyama K, Bhide PG, Vonsattel JP, DiFiglia M (2001) Early and progressive accumulation of reactive microglia in the Huntington disease brain. J Neuropathol Exp Neurol 60:161–172

    PubMed  CAS  Google Scholar 

  68. Rajkowska G, Selemon LD, Goldman-Rakic PS (1998) Neuronal and glial somal size in the prefrontal cortex: a postmortem morphometric study of schizophrenia and Huntington disease. Arch Gen Psychiatry 55:215–224

    Article  PubMed  CAS  Google Scholar 

  69. Blandini F, Nappi G, Tassorelli C, Martignoni E (2000) Functional changes in the basal ganglia circuitry in Parkinson’s disease. Prog Neurobiol 62:63–88

    Article  PubMed  CAS  Google Scholar 

  70. McGeer PL, Yasojima K, McGeer EG (2001) Inflammation in Parkinson’s disease. Adv Neurol 86:83–89

    PubMed  CAS  Google Scholar 

  71. Sherer TB, Betarbet R, Greenamyre JT (2001) Pathogenesis of Parkinson’s disease. Curr Opin Investig Drugs 2:657–662

    PubMed  CAS  Google Scholar 

  72. Sethi KD (2002) Clinical aspects of Parkinson disease. Curr Opin Neurol 15:457–460

    Article  PubMed  Google Scholar 

  73. Carlsson A (2002) Treatment of Parkinson’s with L-DOPA. The early discovery phase, and a comment on current problems. J Neural Transm 109:777–787

    Article  PubMed  CAS  Google Scholar 

  74. Consroe P (1998) Brain cannabinoid systems as targets for the therapy of neurological disorders. Neurobiol Dis 5:534–551

    Article  PubMed  CAS  Google Scholar 

  75. Müller-Vahl KR, Kolbe H, Schneider U, Emrich HM (1999). Cannabis in movement disorders. Forsch Komplementmed 6:23–27

    Article  Google Scholar 

  76. Lastres-Becker I, Molina-Holgado F, Ramos JA, Mechoulam R, Fernández-Ruiz J (2005) Cannabinoids provide neuroprotection against 6-hydroxydopamine toxicity in vivo and in vitro: relevance to Parkinson’s disease. Neurobiol Dis 19:96–107

    Article  PubMed  CAS  Google Scholar 

  77. Gao HM, Jiang J, Wilson B, Zhang W, Hong JS, Liu B (2002) Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson’s disease. J Neurochem 81:1285–1297

    Article  PubMed  CAS  Google Scholar 

  78. Kim WG, Mohney RP, Wilson B, Jeohn GH, Liu B, Hong JS (2000) Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia. J Neurosci 20:6309–6316

    PubMed  CAS  Google Scholar 

  79. Nagatsu T, Mogi M, Ichinose H, Togari A (2000) Changes in cytokines and neurotrophins in Parkinson’s disease. J Neural Transm 60:277–290

    Google Scholar 

Download references

Acknowledgments

The experimental work carried out by our group and that has been mentioned in this review article, has been supported during the last years by the MEC (grants SAF2003-08269 and SAF2006-11333), MSC (CIBERNED, CB06/05/0089) and CAM (S-SAL-0261/2006). The authors are indebted to all colleagues who contributed in this experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Fernández-Ruiz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sagredo, O., García-Arencibia, M., de Lago, E. et al. Cannabinoids and Neuroprotection in Basal Ganglia Disorders. Mol Neurobiol 36, 82–91 (2007). https://doi.org/10.1007/s12035-007-0004-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-007-0004-3

Keywords

Navigation